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Abstract. This paper describes the calculation of the semileptonic Kl3 decay form factors at order p6 of
chiral perturbation theory, which is the next-to-leading order correction to the well-known p4 result achieved
by Gasser and Leutwyler. At order p6 the chiral expansion contains one- and two-loop diagrams which are
discussed in detail. The irreducible two-loop graphs of the sunset topology are calculated numerically. In
addition, the chiral Lagrangian L(6) produces direct couplings with the W bosons. Due to these unknown
couplings, one can always add linear terms in q2 to the predictions of the form factor f−(q2). For the
form factor f+(q2), this ambiguity involves even quadratic terms. Making use of the fact that the pion
electromagnetic form factor involves the same q4 counterterm, the q4 ambiguity can be resolved. Apart
from the possibility of adding an arbitrary linear term in q2 our calculation shows that chiral perturbation
theory converges very well in this application, as the O(p6) corrections are small. Comparing the predictions
of chiral perturbation theory with the recent CPLEAR data, it is seen that the experimental form factor
f+(q2) is well described by a linear fit, but that the slope λ+ is smaller by about 2 standard deviations
than the O(p4) prediction. The unavoidable q2 counterterm of the O(p6) corrections allows one to bring
the predictions of chiral perturbation theory into perfect agreement with experiment.

1 Introduction

The hadronic matrix elements of weak decays constitute
a decisive testing ground for our understanding of low-
energy strong interactions. In this respect, the semilep-
tonic Kl3 decay is one of the cleanest and most interest-
ing processes. In particular, it has been stressed [1] that
this decay constitutes the best source for the extraction
of the CKM matrix element |Vus|. On the experimental
side there exist a number of old high statistics results
(some contradictory), and new precision experiments are
in progress or already published [2]. On the theoretical
side chiral perturbation theory [3,4] has established itself
as a powerful effective theory of low-energy strong interac-
tions. Based on the symmetry of the underlying QCD, chi-
ral perturbation theory produces a systematic low-energy
expansion of the observables in this regime. Unfortunately,
because of the non-renormalizability of the effective the-
ory, higher powers in the energy expansion require higher
loop Feynman integrals and as input an ever increasing
number of renormalization constants. The p4 Lagrangian
involves ten free parameters which were determined in the
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fundamental papers of Gasser and Leutwyler [4]. For the
p6 Lagrangian more than a hundred counterterms were
found [5]. In a more recent analysis [6] the number of in-
dependent counterterms was reduced to 90. Unfortunately,
there is no simple prescription how to translate from one
base into the other. The series of calculations on form fac-
tors taken up by us begun before this paper was published.
In order to preserve the continuity with our previous pa-
pers on order p6 chiral perturbation theory, we stick to the
convention of [5]. There is no harm in keeping more than
the minimal number of operators, as it is, for all practical
purposes, impossible to determine by the necessary inde-
pendent experiments such a large number of counterterms
(including their finite parts), be it 143 or 90. Relations
between individual physical processes are manifest in any
case, as demonstrated in [7] and in the discussion below,
where a relation of a part of the Kl3 form factor to the
pion electromagnetic form factor is established. The Kl3
decay amplitude has been calculated some time ago to
O(p4) [8] and more recently to O(p4, (md − mu)p2, e2p2)
[9]. To O(p6), the contribution of the double chiral logs
has been calculated in [10].

We present here the results of a full p6 and two-loop
analysis of the semi-leptonic Kl3 form factors, relying
heavily on recent progress in the calculation of massive
two-loop integrals [11,12]. Complementary calculations to
this order involve the vector two-point function [13], ππ
scattering [14] and the Kl4 form factors [15].

As the relevant part of the p6 Lagrangian contains so
many unknown parameters, one may question the useful-



428 P. Post, K. Schilcher: Kl3 form factors at order p6 of chiral perturbation theory

ness of such calculations. Here are a few arguments in
favor.

(1) In a given class of experiments, such as the electro-
magnetic and weak form factors of the light mesons,
only a limited number of renormalization constants
enter and relations between amplitudes can be tested
[7].

(2) The unknown constants enter only polynomially, and
precision experiments could separate the unambigu-
ous predictions.

(3) Knowledge of the exact low-energy functional form of
an amplitude may be important for the experimental
extraction of low-energy parameters such as charge
radii.

(4) The results may be used in model calculations which
predict the polynomial terms. These calculations can
then be compared with experiment.

(5) The question of convergence of the chiral perturbation
theory may be addressed.

2 The matrix element

K mesons can decay into a pion and a lepton pair via the
following channels:

K+(p1) → π0(p2)�+(p�)ν�(pν), (1)
K0(p1) → π−(p2)�+(p�)ν�(pν), (2)

and their charge conjugate modes. The symbol � stands
for e or µ. We work in the isospin symmetry limit (mu =
md), where all the hadronic Kl3 decay matrix elements are
equal. We therefore restrict the discussion in the following
to K0

l3 decay.
In the standard model only the vector current Vµ =

ūγµs contributes to Kl3 decay, and the hadronic matrix
element has therefore the general form

〈π−(p2) | ūγµs | K0(p1)〉
= (p1 + p2)µf+(q2) + (p1 − p2)µf−(q2), (3)

where q = p1 − p2. The q2 dependence of the form factors
is usually approximated by

f±(q2) = f±(0) ·
(

1 + λ±
q2

m2
π

)
. (4)

The experimental method for the determination of λ±
consists in comparing the measured q2 distribution with
a simulation using a constant form factor (λ± = 0). This
approximation could possibly be too crude for future ac-
curate data.

The slope λ+ has been remeasured recently in the
CPLEAR experiment [2] with the result

λ+ = 0.0245 ± 0.0012stat ± 0.0022syst. (5)

This value differs by almost two standard deviations from
the previous world average [17] of

λ+ = 0.0300 ± 0.0026 (6)

(which is based on old data of the seventies) and from the
prediction of order p4 chiral perturbation theory [8,1].

The slope λ− can only be measured in Kµ3 decay, and
its status is even more controversial. It is common to con-
sider also the so-called scalar form factor (because it spec-
ifies the S-wave projection of the crossed channel matrix
element)

f0(q2) = f+(q2) +
q2

m2
K − m2

π

f−(q2). (7)

3 The Lagrangian
of chiral perturbation theory

In the usual formulation of chiral perturbation theory the
pseudo-scalar fields are collected in a unitary 3×3 matrix

U(x) = exp
[
i
Φ(x)
F

]
, (8)

where F absorbs the dimensional dependence of the fields,
and, in the chiral limit, is equal to the pion decay constant,
F = 92.4 MeV. The 3 × 3 matrix Φ is given by

Φ = λaφa =




π0 +
1√
3
η

√
2π+

√
2K+

√
2π− −π0 +

1√
3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η




, (9)

where λa are the Gell-Mann matrices.
An explicit breaking of chiral symmetry is introduced

via the mass matrix

χ =




m2
π 0 0

0 m2
π 0

0 0 2m2
K − m2

π


 , (10)

where mπ and mK are the unrenormalized masses of the
π and K mesons. The mass of the η meson is given to this
order by the Gell-Mann–Okubo relation

m2
η =

4
3
m2

K − 1
3
m2

π. (11)

The mass term is related to the quark masses by χ =
const ·diag(mu, md, ms) with mu = md. To calculate form
factors, we have to include the interaction with external
boson fields. This is done by introducing gauge fields lµ,
rµ:

lµ =
8∑

a=1

Talaµ and rµ =
8∑

a=1

Tara
µ (12)

(Ta = λa/2) with their field tensors

Lµν = ∂µlν − ∂ν lµ − i[lµ, lν ], (13)
Rµν = ∂µrν − ∂νrµ − i[rµ, rν ], (14)
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and replacing the usual derivative by a covariant one,

∂µU → DµU = ∂µU + iUlµ − irµU. (15)

In this way we have extended the global chiral SU(3) ×
SU(3) to a local symmetry. In case of the weak interaction,
the external boson is the W and is given by

lµ = − e√
2 sin θW

(W+
µ T + h.c.), (16)

rµ = 0, (17)

with

T =




0 Vud Vus

0 0 0
0 0 0


 . (18)

With the building blocks Dµ, U , U†, Lµν , Rµν and
χ we can construct the Lagrangian of chiral perturbation
theory

L = L(2) + L(4) + L(6) + . . . , (19)

where L(2n) denotes the most general expression with 2n
powers of mass or covariant derivatives that is consistent
with the symmetries of QCD. For the two lowest orders
the result is [3] [4]

L(2) =
F 2

4
Tr(DµUDµU†) +

F 2

4
Tr(χU† + Uχ†), (20)

L(4) = L1{Tr(DµUDµU†)}2

+ L2Tr(DµUDνU†)Tr(DµUDνU†)

+ L3Tr(DµUDµU†DνUDνU†)

+ L4Tr(DµUDµU†)Tr(χU† + Uχ†)

+ L5Tr(DµUDµU†(χU† + Uχ†))

+ L6{Tr(χU† + Uχ†)}2 + L7{Tr(χ†U − U†χ)}2

+ L8Tr(χU†χU† + Uχ†Uχ†)

− iL9Tr(LµνDµUDνU† + RµνDµU†DνU)

+ L10Tr(LµνURµνU†). (21)

The so-called low-energy constants L1, . . . , L10 are un-
renormalized coupling constants which must be deter-
mined by comparison with experiment. The O(p6) La-
grangian was determined in [5]. Out of the 143 terms, we
reproduce here only those which are relevant to semilep-
tonic K decays:

F 2L(6)
rel = β8Tr([DµDνU ]m{[DµU ]m, [Dνχ]p}) (22)

+ β14Tr([DµU ]m({[Dµχ]p, [χ]m}
−{[Dµχ]m, [χ]p}))

+ β15{Tr([DµU ]m[Dµχ]p)Tr([χ]m)
−Tr([DµU ]m[χ]p)Tr([Dµχ]m)}

+ β16{Tr([DµU ]m[Dµχ]m)Tr([χ]p)
−Tr([DµU ]m[χ]m)Tr([Dµχ]p)}

+ β17Tr([DµU ]m[DµU ]m[χ]p[χ]p)
+ β18Tr([DµU ]m[DµU ]m[χ]p)Tr([χ]p)

+ β19Tr([DµU ]m[DµU ]m)Tr([χ]p[χ]p)
+ β20Tr([DµU ]m[χ]p)Tr([DµU ]m[χ]p)
+ β21Tr([DµU ]m[DµU ]m)Tr([χ]p)Tr([χ]p)
+ iβ22Tr([DµDρU ]m[[DρU ]m, [DνGµν ]p])
+ iβ23Tr([DµDρU ]m[[DνU ]m, [DρG

µν ]p])
+ iβ24Tr([DµU ]m[DνU ]m{[χ]p, [Gµν ]p})
+ iβ25Tr([DµU ]m[χ]p[DνU ]m[Gµν ]p)
+ iβ26Tr([DµU ]m[DνU ]m[Gµν ]p)Tr([χ]p)
+ iβ27Tr([DµU ]m([[Dνχ]m, [Gµν ]p]

−[[χ]m, [DνGµν ]p])),

where we used the notation of [5]

Gµν = RµνU + ULµν , (23)

[A]m =
1
2
(AU† − UA†), (24)

[A]p =
1
2
(AU† + UA†), (25)

with a slight change of notation for the couplings

βi
.= F 2Bi (Fearing–Scherer) (26)

so as to use dimensionless quantities.
The Feynman rules can be derived by expanding U =

exp(iΦ/F ) everywhere in L = L(2) +L(4) +L(6) and iden-
tifying the relevant vertex monomials in L. Before dis-
cussing the Feynman rules in detail in the next section,
we would like to make a remark on the definition of the
form factors. The currents entering in (3) are defined on
the quark level. The connection to the effective theory is
established by identifying these currents with the Noether
currents of the chiral symmetry,

ūγµs = Vµ,4 − iVµ,5, (27)

where V µ
a = lµa + rµ

a , a = 1, . . . , 8, denotes the vector
current in the effective theory.

It is obviously necessary to distinguish also graphically
the vertices from L(2), L(4) and L(6). We use the conven-
tions: a filled circle �stands for a vertex from L(2), a filled
square for a vertex from L(4) and an open square for
a vertex from L(6).

3.1 Pure meson vertices

If loop corrections to form factor diagrams are considered
various vertices enter which involve only mesons. In the
form factor calculation to O(p6) five vertices from L =
L(2) + L(4) + L(6) will contribute.

From L(2) we have to consider vertices with 4 and 6
meson fields:

48F 2L(2)
four = 2Tr([φ, ∂µφ]φ∂µφ) + Tr(χφ4) (28)

and

1440F 4L(2)
six = 2Tr(∂µφ∂µφφ4) − 8Tr(∂µφφ∂µφφ3)
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+ 6Tr(∂µφφ2∂µφφ2) − Tr(χφ6). (29)

Similarly we have the two- and four-meson vertex from
L(4):

F 2L(4)
two = 2L4Tr(∂µφ∂µφ)Tr(χ) (30)

+ 2L5Tr(χ∂µφ∂µφ) − 4L6Tr(χφ2)Tr(χ)

− 4L7{Tr(χφ)}2 − 2L8{Tr(χ2φ2) + Tr(χφχφ)},

6F 4L(4)
four = 6L1{Tr(∂νφ∂νφ)}2 (31)

+ 6L2Tr(∂µφ∂νφ)Tr(∂µφ∂νφ)
+ 6L3Tr(∂µφ∂µφ∂νφ∂νφ)
− 2L4{Tr([φ, ∂νφ]φ∂νφ)Tr(χ)
+ 3Tr(∂νφ∂νφ)Tr(χφ2)}
− L5{2Tr(χφ2∂νφ∂νφ) + 3Tr(χφ∂νφ∂νφφ)
− Tr(χφ∂νφφ∂νφ) + Tr(χ∂νφφ2∂νφ)
− Tr(χ∂νφφ∂νφφ) + 2Tr(χ∂νφ∂νφφ2)}
+ 2L6{Tr(χφ4)Tr(χ) + 3[Tr(χφ2)]2}
+ 8L7Tr(χφ3)Tr(χφ)
+ L8{Tr(χ2φ4) + 2Tr(χφχφ3) + 3Tr(χφ2χφ2)
+ 2Tr(χφ3χφ)}.

The parameters L1, . . . , L10, the so-called low-energy con-
stants of L(4), are not fixed by the symmetries but must
be determined by comparing perturbative results with ex-
perimental data or with models. The low-energy constants
also serve to renormalize the loop diagrams. Therefore
they contain divergent pieces which, in dimensional regu-
larization, manifest themselves in 1/ε-poles (D = 4 − 2ε)
and which were calculated in [4].

Finally, the two-meson vertex from L(6) enters:

F 4L(6)
two = −β17Tr(∂µφ∂µφχχ) (32)

− β18Tr(∂µφ∂µφχ)Tr(χ)
− β19Tr(∂µφ∂µφ)Tr(χχ)
− β20Tr(∂µφχ)Tr(∂µφχ)
− β21Tr(∂µφ∂µφ)Tr(χ)Tr(χ).

3.2 W boson–meson vertices

Every diagram contributing to Kl3 decay contains one ver-
tex where the external W boson couples to the mesons.
The Feynman rules of the corresponding vertices result
from the terms in L that are linear in the gauge fields.
Thus, the left-handed and right-handed mesonic currents
that couple to the external pseudo-scalar mesons are given
by

JL
µ,a =

δL
δlµ,a

∣∣∣∣
rµ=lµ=0

, JR
µ,a =

δL
δrµ,a

∣∣∣∣
rµ=lµ=0

. (33)

The result for the currents from L(2) reads

JL
µ,a[L(2)] =

i
4
Tr(Ta[∂µφ, φ]) (34)

− i
48F 2 TrTa([∂µφ, φ3] − 3φ[∂µφ, φ]φ)

+
i

1440F 4 TrTa([∂µφ, φ5] − 5φ[∂µφ, φ3]φ

+10φ2[∂µφ, φ]φ2),

where we have only written the terms contributing to Kl3
decay at O(p6). We represent a W vertex from L(2) by a
filled circle �.

The result for the relevant terms of the current from
L(4) reads

F 2JL
µ,a[L(4)]two = 2iL4Tr(Ta[∂µφ, φ])Tr(χ) (35)

+ iL5TrTa(χ∂µφφ + ∂µφχφ − φχ∂µφ − φ∂µφχ)
− iL9∂

νTr(Ta[∂µφ, ∂νφ])

for the two-meson–W vertex and

12F 4JL
µ,a[L(4)]four (36)

= 24iL1Tr(Ta[∂µφ, φ])Tr(∂νφ∂νφ)
+ 24iL2Tr(Ta[∂νφ, φ])Tr(∂µφ∂νφ)
+ 12iL3TrTa({∂µφ, ∂νφ∂νφ}φ − φ{∂µφ, ∂νφ∂νφ})

− 2iL4{6Tr(Ta[∂µφ, φ])Tr(χφ2) + TrTa([∂µφ, φ3]
− 3φ[∂µφ, φ]φ)Tr(χ)}
− iL5{TrTa(χ[∂µφ, φ]φ2 + 2χφ2∂µφφ − 2φχ{∂µφ, φ2})

+ TrTa(2∂µφχφ3 + 4φχφ∂µφφ + 3[∂µφ, φ]χφ2)

+ TrTa(3φ2χ[∂µφ, φ] + 2{∂µφ, φ2}χφ − 4φ∂µφφχφ)

+ TrTa(−2φ3χ∂µφ − 2φ∂µφφ2χ + φ2[∂µφ, φ]χ)}
+ iL9∂

ν{TrTa(−3φ[∂µφ, ∂νφ]φ + ∂µφφ2∂νφ−∂νφφ2∂µφ)

+ TrTa(2φ2[∂µφ, ∂νφ] + 2[∂µφ, ∂νφ]φ2

− [∂µφφ, ∂νφφ] − TrTa([φ∂µφ, φ∂νφ])}
for the four-meson vertex with one W boson. In the dia-
grams we represent a W vertex from L(4) by a filled square

.
Finally a two-meson-W vertex from L(6) contributes

4F 4JL
µ,a[L(6)] = 2iβ8TrTa[χ, {∂µ∂νφ, ∂νφ}] (37)

+ iβ14TrTa(2χφ∂µφχ − 2χ∂µφφχ + χχ∂µφφ

− χχφ∂µφ + ∂µφφχχ − φ∂µφχχ)
+ 2iβ15{Tr(χφ)TrTa[∂µφ, χ] − Tr(χ∂µφ)TrTa[φ, χ]}
+ iβ16Tr(χ)TrTa[{∂µφ, φ}, χ]
+ 2iβ17TrTa(φ∂µφχχ − ∂µφχχφ + φχχ∂µφ − χχ∂µφφ)
+ 2iβ18Tr(χ)TrTa(φ∂µφχ − ∂µφχφ + φχ∂µφ − χ∂µφφ)
+ 4iβ19{Tr(χχ)Tr(Ta[φ, ∂µφ])
+ 2Tr(χ[χ, φ])Tr(Ta∂µφ)}
+ 4iβ20Tr(χ∂µφ)Tr(Ta[φ, χ])
+ 4iβ21Tr(χ)Tr(χ)Tr(Ta[φ, ∂µφ])
+ 4iβ22TrTa(∂ν∂ν [∂µ∂ρφ, ∂ρφ] − ∂µ∂ν [∂ν∂ρφ, ∂ρφ])
+ 4iβ23∂

ν∂ρTrTa([∂µ∂ρφ, ∂νφ] − [∂ν∂ρφ, ∂µφ])
− 4iβ24∂

νTr([∂µφ, ∂νφ]{χ, Ta})
− 4iβ25∂

νTrTa(∂µφχ∂νφ − ∂νφχ∂µφ)
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− 4iβ26∂
νTr(Ta[∂µφ, ∂νφ])Tr(χ)

+ 2iβ27∂
νTrTa([∂µφ, {∂νφ, χ}] − [∂νφ, {∂µφ, χ}]).

A W vertex from L(6) is represented by an open square
. From the interactions given above, the Feynman rules

can be extracted by transforming into momentum space
and symmetrizing over the meson fields.

3.3 Renormalization scheme

Before evaluating the loop diagrams, we must specify the
regularization and renormalization scheme. In our calcu-
lation we are using dimensional regularization and the so-
called GL scheme which is defined in the following way:
each diagram of order O(p2n) is multiplied with a factor
e(1−n)α(ε) where D = 4−2ε is the dimension of space-time
and α(ε) is given by

(4π)εΓ (−1 + ε) = −eα(ε)

ε
, (38)

that is

α(ε) = ε(1 − γ + log 4π) + ε2
(

π2

12
+

1
2

)
+ O(ε3). (39)

Because of α(0) = 0 the total O(p6) result is unchanged in
D = 4 dimensions. The reason for this modification of each
diagram is to eliminate the geometric factor (4π)εΓ (−1+
ε) appearing in the one-loop integrals. This renormaliza-
tion scheme is very similar to the well-known MS scheme,
where each diagram is multiplied by a factor (4π)−εeγε

per loop (instead of e−α(ε) ).
The GL scheme extends the usual one-loop scheme in-

troduced by Gasser and Leutwyler [4] in a natural way.
This can be understood by considering the renormaliza-
tion constants Li of L(4): In D-dimensional space-time
they have dimension D − 4 and their dimension is made
manifest by the mass scale µ of dimensional regularization:

Li = µD−4Li(µ, D). (40)

Li(µ, D) has the same µ dependence as a one-loop integral,
because Li itself is independent of µ. It can be expanded
in a Laurent series around ε = 0 in the same way as a
one-loop integral:

Li(µ, D) =
L

(−1)
i

ε
+ L

(0)
i (µ) + εL

(1)
i (µ) + O(ε2). (41)

In the usual one-loop scheme one chooses

L
(−1)
i = − Γi

32π2 , (42)

L
(0)
i (µ) = Lren

i (µ) − Γi

32π2 [1 − γ + log 4π], (43)

where Γi are numbers which can be found in [4]. The sec-
ond term in L

(0)
i is constructed so that it cancels in the ε0

coefficient after multiplication with the GL factor e−α(ε):

LGL
i (µ, D) = e−α(ε)Li(µ, D) (44)

=
L

(−1)
i

ε
+ L

(0),GL
i (µ) + εL

(1),GL
i (µ) + O(ε2),

with L
(0),GL
i (µ) = Lren

i (µ).
The dimension of the L(6) parameters βi appearing in

(32) can be treated in the same way:

βi = µ2D−8βi(µ, D), (45)

where βi(µ, D) behaves like a two-loop integral. Its Lau-
rent series in the above GL scheme is given by

βGL
i (µ, D) = e−2α(ε)βi(µ, D) (46)

=
β

(−2)
i

ε2 +
β

(−1),GL
i (µ)

ε
+ β

(0),GL
i (µ) + O(ε).

3.4 Mass and wavefunction renormalization

To order p6, finite S-matrix elements in chiral perturba-
tion theory are obtained by multiplying the unrenormal-
ized one-particle irreducible (1PI) Feynman diagrams ob-
tained from L = L(2) + L(4) + L(6) with a factor Z1/2 per
external meson, where Z is the wavefunction renormaliza-
tion constant for this meson. To be on familiar ground, we
start by calculating the mass and wavefunction renormal-
ization from the renormalized propagator

i
p2 − m2 − Σ(p2)

, (47)

where m denotes the bare meson mass and Σ(p2) the 1PI
unrenormalized self-energy which is given perturbatively
by

Σ(p2) = Σ1(p2) + Σ2(p2) + . . . (48)

The leading O(p2) contribution vanishes, so that Σ1 , Σ2
represent the contributions of O(p4) and O(p6).

From the condition that the renormalized propagator
develops a pole with residue 1 at p2 = m2

ph, where mph is
the physical or pole mass, one derives the conditions

δm2 = m2
ph − m2 = Σ(p2 = m2

ph, m2, F ), (49)

Z−1 = 1 − Σ′(p2 = m2
ph, m2, F ), (50)

where m stands symbolically for the set of unrenormalized
masses and F is the unrenormalized pion decay constant
(all assumed to be given as functions of the renormal-
ized or physical parameters). Perturbatively, Z is therefore
given by

Z = 1 + δZ1 + δZ2 + . . . (51)

with the O(p4) and O(p6) corrections

δZ1 = Σ′
1(p

2 = m2, m2, F ), (52)
δZ2 = Σ′

2(m
2
ph) + Σ′

1(m
2
ph)2, (53)

where we have expanded Σ′
1 around p2 = m2 and used

the fact that the term involving the second derivative of
Σ1(p2) vanishes, i.e. Σ′

1 is independent of p2. In (52) the
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unrenormalized quantities m2, F must be expressed by
their physical values according to (49) and (60) below.

Each external meson propagator must be multiplied
by a factor

√
Z =

√
1 + δZ = 1 +

δZ1

2
+

[
δZ2

2
− (δZ1)2

8

]
+ O(p6).

(54)
We have to calculate Σ(p2) for π, K mesons in order

to determine Zπ, ZK and δm2
π, δm2

K . The O(p4) results
are well known [4]:

δZπ
1 = − 1

3F 2 {A0(m2
K) + 2A0(m2

π) (55)

+ 24L4(2m2
K + m2

π) + 24L5m
2
π},

δZK
1 = − 1

4F 2 {A0(m2
η) + 2A0(m2

K) + A0(m2
π) (56)

+ 32L4(2m2
K + m2

π) + 32L5m
2
K},

δm2
π =

1
6F 2 {m2

πA0(m2
η) − 3m2

πA0(m2
π) (57)

− 48m2
π(2m2

K + m2
π)L4 − 48L5m

4
π

+ 96L6m
2
π(2m2

K + m2
π) + 96L8m

4
π},

δm2
K =

1
12F 2

{
− 4m2

KA0(m2
η) (58)

− 96L4m
2
K(2m2

K + m2
π) − 96L5m

4
K

+ 192L6m
2
K(2m2

K + m2
π) + 192L8m

4
K

}
.

The function A0(m2) is the standard tadpole integral

A0(m2) = µ4−D

∫
dDk

i(2π)D

1
k2 − m2 , (59)

where D = 4 − 2ε is the dimension of space-time.
In addition, we need the renormalization of the pion

decay constant
δF = Fπ − F, (60)

where Fπ is the physical pion decay constant. We only
quote the result [4]:

δF =
1

2F
{A0(m2

K) + 2A0(m2
π) (61)

+ 8L4(2m2
K + m2

π) + 8L5m
2
π}.

It should be noted that the renormalization constants
δm2 and δF defined above are finite. The divergences and
scale dependence of the loop integrals are canceled by sim-
ilar factors in the counterterms Li from L(4).

The self-energy diagrams contributing up to two loops
and to order p6 are given in Fig. 1. External legs are fixed
by the mesons considered, while one has to sum over all
possible internal meson lines.

We call a two-loop diagram “reducible”, if the two-
loop integrations decouple, i.e. if they are given by a prod-
uct of one-loop integrals. Otherwise they are called “irre-
ducible”. The O(p6) correction of the wavefunction renor-
malization Z consists of three parts:

δZ2 = δZred
2 + δZ irred

2 + δZ2[L(6)], (62)
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Fig. 1a–h. Self-energy diagrams up to order p6. L(2) vertices
are denoted by filled circles ( �), L(4) vertices by filled squares
( ), and an L(6) vertex by an open square ( )

which are given below for π and K.
The one-loop and the reducible two-loop diagrams of

Fig. 1 yield for the pion wavefunction renormalization Zπ

an O(p6) contribution

δZπ,red
2 =

1
180F 4

{
2880

[
2L1 + 4L2 + L3

]
A2(m2

π) (63)

+ 2880
[
4L2 + L3

]
A2(m2

K) + 960
[
3L2 + L3

]
A2(m2

η)

+ 960m2
π

[
(2m2

K + m2
π)(L4 − 2L6) + m2

π(L5 − 2L8)
]

×A0;2(m2
π)

+ 480m2
K

[
(m2

π + 2m2
K)(L4 − 2L6) + m2

K(L5 − 2L8)
]

×A0;2(m2
K)

+ 720m2
π

[
12L1 + 4L2 + 6L3 − 6L4 − 3L5

]
A0(m2

π)

+ 480
[
24m2

KL1 + 6m2
KL3 − 12m2

KL4 − (m2
π + 2m2

K)L5
]

×A0(m2
K)

+ 80
[
2(4m2

K − m2
π)(6L1 + L3 − 3L4) − 3m2

πL5
]
A0(m2

η)

+ 20m2
π

[
3A0(m2

π) − A0(m2
η)
]
A0;2(m2

π)

+ 20m2
KA0(m2

η)A0;2(m2
K)

− 15A0(m2
K)A0(m2

π) + 6A0(m2
K)2

+ 9A0(m2
η)A0(m2

K)
}

+ (δZπ
1 )2,

where δZπ
1 is the O(p4) result from (55) and the additional

functions A0;2 and A2 are related to the tadpole integral
A0 and the dimension D of space-time (cf. (108) and (104)
in Appendix A):



P. Post, K. Schilcher: Kl3 form factors at order p6 of chiral perturbation theory 433

A0;2(m2) =
1

m2

(
D

2
− 1

)
A0(m2) and (64)

A2(m2) =
m2

D
A0(m2).

For the irreducible two-loop contributions of Fig. 1,
which involve higher transcendental functions, we only
quote the exact result for the divergent part and a nu-
merical result for the finite part. The latter involves an
arbitrary scale µ which cancels in the final answer for the
form factor. For the choice

µ = mρ = 770 MeV, mK = 495 MeV,

mπ = 0.28mK , Fπ = 92.4 MeV, (65)

m2
η being an abbreviation for the Gell-Mann–Okubo term

(4/3)m2
K − (1/3)m2

π, and the definition

Lg(m2) .= log
(

m2

4πµ2

)
+ γ

we obtain

δZπ,irred
2 = 2.015180506 +

78m4
K + 22m2

Km2
π + 89m4

π

72(4π)4F 4ε2

+
1

288(4π)4F 4ε

{
1452m4

K − 36m2
Km2

π + 1163m4
π

− 4(24m4
K + 14m2

Km2
π − 5m4

π)Lg(m2
η)

− 528m4
KLg(m2

K)

− 12m2
π(10m2

K + 61m2
π)Lg(m2

π)
}

. (66)

Similarly we obtain for the reducible part of the kaon
wavefunction renormalization

δZK,red
2 =

1
360F 4

{
4320

[
4L2 + L3

]
A2(m2

π) (67)

+ 2880
[
4L1 + 10L2 + 3L3

]
A2(m2

K)

+ 480
[
12L2 + L3

]
A2(m2

η)

+ 720m2
π

[
(2m2

K + m2
π)(L4 − 2L6) + m2

π(L5 − 2L8)
]

×A0;2(m2
π)

+ 1440m2
K

[
(2m2

K + m2
π)(L4 − 2L6) + m2

K(L5 − 2L8)
]

×A0;2(m2
K)

+ 80
[
(4m2

K − m2
π)2L5 − 48(m2

K − m2
π)2L7

+ 3(4m2
K − m2

π)(2m2
K + m2

π)(L4 − 2L6)
− 6(8m4

K − 8m2
Km2

π + 3m4
π)L8

]
A0;2(m2

η)

+ 720
[
6m2

π(L3 − 2L4 + 4L1) − (2m2
π + m2

K)L5
]
A0(m2

π)

+ 1440m2
K

[
16L1 + 4L2 + 6L3 − 8L4 − 3L5

]
A0(m2

K)

+ 80
[
2(4m2

K − m2
π)(5L3 − 6L4 + 12L1)

+ 3(2m2
π − 7m2

K)L5
]
A0(m2

η)

+ 45m2
πA0(m2

π)A0;2(m2
π) − 45m2

πA0(m2
π)A0;2(m2

η)

+ 120m2
KA0(m2

K)A0;2(m2
η) − 15m2

πA0(m2
η)A0;2(m2

π)

+ 60m2
KA0(m2

η)A0;2(m2
K)

+ 5(7m2
π − 16m2

K)A0(m2
η)A0;2(m2

η)

+ 45A0(m2
π)2 − 18A0(m2

K)2 − 27A0(m2
η)2

− 54A0(m2
π)A0(m2

η) − 27A0(m2
π)A0(m2

K)

+ 81A0(m2
K)A0(m2

η)
}

+ (δZK
1 )2.

The irreducible diagram yields

δZK,irred
2 = 2.8602989531 +

142m4
K + 5m2

Km2
π + 42m4

π

72(4π)4F 4ε2

+
1

288(4π)4F 4ε

{
1769m4

K + 186m2
Km2

π

+ 624m4
π − 4(56m4

K − 26m2
Km2

π + 3m4
π)Lg(m2

η)

− 24m2
K(38m2

K + 3m2
π)Lg(m2

K)

− 36m2
π(2m2

K + 9m2
π)Lg(m2

π)
}

. (68)

Finally, the contribution arising from the L(6) con-
stants of (22) are

δZπ
2 [L(6)] =

1
F 4

{
4m4

πβ17 + 4m2
π(2m2

K + m2
π)β18 (69)

+ 4(4m4
K − 4m2

Km2
π + 3m4

π)β19

+ 4(4m4
K + 4m2

Km2
π + m4

π)β21

}
,

δZK
2 [L(6)] =

1
F 4

{
4(2m4

K − 2m2
Km2

π + m4
π)β17 (70)

+ 4m2
K(2m2

K + m2
π)β18

+ 4(4m4
K − 4m2

Km2
π + 3m4

π)β19

+ 4(4m4
K + 4m2

Km2
π + m4

π)β21

}
.

If the unrenormalized contributions of the order p2, p4 and
p6 -diagrams of Fig. 2 are denoted as ∆0f , ∆1f , and ∆2f ,
then, with the mass and wavefunction renormalizations
given above, the renormalized form factors read

f =
√

ZK(∆0f + ∆1f + ∆2f)
√

Zπ (71)

= ∆0f +

{
∆1f

+∆0f

(
1
2
δZK

1 +
1
2
δZπ

1

)}

m2=m2
ph−δm2, F=Fπ−δF

+ ∆2f + ∆1f

{
1
2
δZK

1 +
1
2
δZπ

1

}

+ ∆0f

{
1
2
δZK

2 +
1
2
δZπ

2 +
1
4
δZK

1 δZπ
1 − 1

8
(δZK

1 )2

− 1
8
(δZπ

1 )2
}

+ O(p8),

where f stands for f±.

3.5 L(6) contributions to the form factors

In every order of chiral perturbation theory there appear
new operators with a priori unknown coefficients. The ten



434 P. Post, K. Schilcher: Kl3 form factors at order p6 of chiral perturbation theory

������������������
�����
��
��
���������������

����

���
��
��������������

������������������

����

��
��
���������������

�����
��
��
��������������

����

��
��
��������������

�����
��
��
���������������

��	�

���
��
��������������

�
���
��
��
�
��
��
���������������

�
���
��
��
�����������������
��

�
���
��
��
���������������

�	

��

�
��

���
��
��������������

���
�� �
	�

���
��

��
��
���������������

�
��

���
��

��
����������������

���

��������������

�
��

�
�

�
�

� ���������������

�
��

�
�

�
�

� �
���������������

�
��

�
�

�
�

� ���������������

Fig. 2. The diagrams for the Kl3

form factor up to order p6. L(2) ver-
tices are denoted by filled circles
( �), L(4) vertices by filled squares
( ), and an L(6) vertex by an open
square ( ). Diagrams (0) to (3f) are
referred to as “reducible”, diagrams
(5a) to (5c) as “irreducible”

constants of L(4) are by now all fixed by experiment, but
little is known about the 143 constants of L(6). Out of
the latter, only 11 enter in semileptonic K decay. There
are two sources which lead to L(6) contributions to the
form factors: one is the O(p6) tree graph of Fig. 2, and
the other one is the O(p2) tree graph of Fig. 2 with the
O(p6) wavefunction renormalization. Since to O(p2)

∆0f+ = 1, (72)
∆0f− = 0,

the total contribution involving L(6) constants (ordered in
powers of q2) to the form factors f+ and f− becomes

∆f+[L(6)] =
2q4

F 4 {β22 + β23} − 2q2

F 4

{
β22(m2

K + m2
π)(73)

− 2β24m
2
K − β25m

2
π − β26(2m2

K + m2
π)

+ β27(m2
K + m2

π)
}

+
4

F 4 β14(m2
K − m2

π)2,

∆f−[L(6)] = −2q2

F 4 (m2
K − m2

π){β8 + β22 + β23} (74)

+
m2

K − m2
π

F 4

{
2β8(m2

K + m2
π)

− 2β16(2m2
K + m2

π) − 4β17m
2
K

− 2β18(2m2
K + m2

π)
+ 2β22(m2

K + m2
π) − 4β24m

2
K

− 2β25m
2
π − 2β26(2m2

K + m2
π)

+ 2β27(m2
K + m2

π)
}

.

The q4 term of ∆f+[L(6)], i.e. 2q4(β22 + β23)/F 4, is
the same as that for the electromagnetic form factor of
the charged pion (and kaon). One can therefore use data
on the second derivative of the pion electromagnetic form
factor at the origin, together with the O(p6) loop calcula-
tion, to determine the combination β22 + β23. Details are
given in Appendix D. We find for the ε0 -part

(β22 + β23)(0),GL = 0.61 × 10−4, (75)

where we have used the GL scheme (46) and chosen the
mass scale µ = 770 MeV. To these counterterm contribu-
tions, we have to add those of the loop diagrams involving
L(2) and L(4) vertices.

3.6 Divergent two-loop contributions to f±

We start with an analysis of the divergent two-loop con-
tributions of Fig. 2 to the form factors. The O(p6) pole
terms in ε have to cancel in the sum of all loops and the
tree graphs with an L(6) vertex:

(
∆loop

p6 f± + ∆f±[L(6)]
)

div
= 0. (76)
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Since the L(6) tree graph part ∆f±[L(6)] is a polynomial in
masses and momenta, it follows that the loop part ∆loop

p6 f±
must also be polynomial in masses and momenta, i.e. it
cannot contain any logarithms thereof. This condition of-
fers a good check of the calculation. In fact, we find that
in the sum of all O(p6) loop diagrams any non-polynomial
terms in masses and momenta cancel:

∆loop
p6 f+ =

1
96(4πF )4ε2

{
21m4

K − 42m2
Km2

π (77)

− 34m2
Kq2 + 21m4

π − 28m2
πq2 − 3q4

}

+
1

576(4π)2F 4ε

{
768L

(0)
1 (−m4

K + 2m2
Km2

π + 3m2
Kq2

−m4
π + 3m2

πq2 − q4)

+ 384L
(0)
2 (−m4

K + 2m2
Km2

π − 3m2
Kq2

−m4
π − 3m2

πq2 + q4)

+ 64L
(0)
3 (−m4

K + 2m2
Km2

π + 45m2
Kq2

−m4
π + 9m2

πq2 − 9q4)

+ 768L
(0)
4 (3m4

K − 6m2
Km2

π + m2
Kq2 + 3m4

π + m2
πq2)

+ 576L
(0)
5 (−3m4

K + 6m2
Km2

π + m2
Kq2 − 3m4

π + m2
πq2)

+ 288L
(0)
9 q2(7m2

K + 5m2
π + q2)

− 1
(4π)2

[70m4
K − 140m2

Km2
π + 167m2

Kq2 + 70m4
π

+125m2
πq2 − 12q4]

}

and

∆loop
p6 f− =

1
48(4πF )4ε2 (78)

× {29m4
K + 18m2

Km2
π − 27m2

Kq2 − 47m4
π + 27m2

πq2}
+

1
576(4π)2F 4ε

×
{

768L
(0)
1 (−7m4

K + 3m2
Kq2 + 7m4

π − 3m2
πq2)

+ 384L
(0)
2 (−19m4

K + 7m2
Kq2 + 19m4

π − 7m2
πq2)

+ 64L
(0)
3 (−145m4

K + 48m2
Km2

π + 41m2
Kq2 + 97m4

π

−41m2
πq2)

+ 384L
(0)
4 (−26m4

K + 9m2
Km2

π + 17m4
π)

+ 64L
(0)
5 (−m4

K + 2m2
Km2

π + 27m2
Kq2 − m4

π − 27m2
πq2)

+ 6912L
(0)
6 (2m4

K − m2
Km2

π − m4
π)

+ 9216L
(0)
7 (m4

K − 2m2
Km2

π + m4
π)

+ 2304L
(0)
8 (5m4

K − 4m2
Km2

π − m4
π)

+ 288L
(0)
9 (−7m4

K + 2m2
Km2

π − m2
Kq2 + 5m4

π + m2
πq2)

+
1

(4π)2
[11m4

K − 204m2
Km2

π − 51m2
Kq2 + 193m4

π

+51m2
πq2]

}
.

This is not the case for the group of reducible resp. the
group of irreducible diagrams alone, only in their sum.
L

(0)
i are the ε0 coefficients of the L(4) constants, cf. (41).
The divergent parts ∆f±[L(6)], given explicitly in terms

of the L(6) constants βj in (73) and (74), have to be the
negative of these expressions so that the whole O(p6) pre-
diction is finite. Since the L(6) constants βj do not know
anything about the masses m2

π, m2
K , they must appear in

(73) and (74) in such a way that the mass dependence
of the divergent parts ∆f±[L(6)] is produced from the ex-
plicit masses in (73) and (74) alone. In other words: the
L(6) constants themselves cannot contribute any masses.
In Appendix C we list the resulting divergent parts for
the relevant L(6) constants βj . The fact that they are in-
dependent of the masses is a consistency check between
our calculation and the Lagrangian L(6) from [5]. We also
agree with the double chiral logs of [10].

3.7 Reducible loop diagrams

The reducible diagrams of Fig. 2 can be expressed in terms
of one-loop integrals. In case of two loops they are of the
form

µ8−2D

∫
dDk

(2π)D

dDl

(2π)D

V (k2, kp1, kp2, kl, l2, lp1, lp2)
P

(79)

and in case of one loop

µ4−D

∫
dDk

(2π)D

V (k2, kp1, kp2)
P

. (80)

Here V is a polynomial of its arguments and P represents
a product of propagator factors that depends on the topol-
ogy of the diagram. A first simplification of these integrals
is achieved by replacing certain factors in the numerator
according to

k2 = P (k, m2) + m2, (81)

kq =
1
2
[P (k + q, m2) + m2 − k2 − q2],

l2 = P (l, m2) + m2,

lq =
1
2
[P (l + q, m2) + m2 − l2 − q2],

where P (k, m2) = k2 − m2 + i0. The remaining integrals
can be expressed through the one-loop one-point function
A0(m2) of (59), the one-loop two-point function

B0(q2, m2
1, m

2
2) (82)

= µ4−D

∫
dDk

i(2π)D

1
[(k + q)2 − m2

1][k2 − m2
2]

,

and tensors and mass derivatives thereof.
In a two-loop calculation these functions have to be

considered up to order ε1 (where D = 4−2ε). The results
are given in Appendix A. The reducible contributions to
f+ are given explicitly for each diagram in Appendix B.
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4 Irreducible two-loop diagrams

In the irreducible diagrams 5a, 5b, 5c of Fig. 2 the two-
loop integrations are not independent of each other as they
were in the reducible graphs. That is why genuine two-
loop functions enter the stage which cannot be expressed
by one-loop integrals only.

Inserting the Feynman rules yields integrands with a
similar structure as in (79)

V (k2, kp1, kp2, kl, l2, lp1, lp2)
P (k + p1, m2

0)P (k + p2, m2
1)P (k + l, m2

2)P (l, m2
3)

, (83)

where V is a polynomial of degree equal to the number of
vertices. After canceling factors via

kp1 =
1
2
[P (k + p1, m

2
1) + m2

0 − k2 − p2
1], (84)

kp2 =
1
2
[P (k + p2, m

2
1) + m2

1 − k2 − p2
2],

kl =
1
2
[P (k + l, m2

2) + m2
2 − k2 − l2],

l2 = P (l, m2
3) + m2

3,

we are left with reducible integrals which can be calculated
analytically, and with some genuine two-loop integrals of
the sunset topology, i.e. the three-point functions

Tα1,α2,β(q2; p2
1, p

2
2; m

2
0, m

2
1, m

2
2, m

2
3) (85)

= µ8−2D

∫
dDk

i(2π)D

dDl

i(2π)D

× (lp1)α1(lp2)α2(k2)β

P (k + p1, m2
0)P (k + p2, m2

1)P (k + l, m2
2)P (l, m2

3)
,

and the two-point functions

Sα,β(p2; m2
1, m

2
2, m

2
3) = µ8−2D

∫
dDk

i(2π)D

dDl

i(2π)D
(86)

× (lp)α(k2)β

P (k + p, m2
1)P (k + l, m2

2)P (l, m2
3)

.

In diagram (5b) of Fig. 2, nine different mass flows of
intermediate mesons must be regarded:

∆(5b)f± = ∆
(5b)
Kπππf± + ∆

(5b)
KπKKf± + ∆

(5b)
Kπηηf± (87)

+ ∆
(5b)
πKπKf± + ∆

(5b)
πKKηf± + ∆

(5b)
ηKπKf±

+ ∆
(5b)
ηKKηf± + ∆

(5b)
KηKKf± + ∆

(5b)
Kηπηf±, (88)

where ∆
(5b)
rstuf± means that mesons r and s couple to the W

boson and the other two lines are mesons of type t and u.
Each mass flow is handled separately, and its contribution
to the Kl3 form factor is expressed in terms of the basic
one- and two-loop functions A, B, Sα,β , Tα1,α2,β , where
for the latter at most the tensor indices

S2,0, S1,1, S1,0, S0,0, S0,1, S0,2, T0,0,0, T0,0,1, T0,0,2,
T0,0,3, T1,0,0, T1,0,1, T1,0,2, T1,1,0, T1,1,1

are needed. Except for special kinematic situations the
genuine two-loop integrals Sα,β and Tα1,α2,β cannot be
calculated analytically. In [12] we describe the method by
which we calculated them by splitting them up into one
part which contains the divergence and can be evaluated
analytically, and a second part which is finite and can be
done numerically.

5 Finite contributions of the loops

After presenting the results of the pole terms of the loop
diagrams we now come to their finite parts which contain
the actual physical information. We will present the re-
sults, which can only be given in numerical form, graph-
ically and as interpolation polynomials. We use the GL
scheme discussed above at a scale µ = mρ = 770 MeV,
the masses given in (65), and the following values for the
finite parts Lren

i of the L(4) constants:

i 1 2 3 4 5 6 7 8 9

104Lren
i 7 ± 5 12 ± 4 −35 ± 13 −3 ± 5 14 ± 5 −2 ± 3 −4 ± 2 9 ± 3 69 ± 7

(89)
The ε1 coefficients of Li are not new degrees of freedom,
but always appear in combination with certain L(6) pa-
rameters. Therefore, we define

L
(1),GL
i (µ = mρ) = 0, (90)

cf. (44). As our kinematical range we choose momentum
transfers −m2

K ≤ q2 ≤ (mK − mπ)2, which is certainly
within the range of applicability of chiral perturbation
theory. The results of the O(p4) and the O(p6) loop con-
tributions (reducible and irreducible) for the form factors
f+(q2) and f−(q2) are plotted as a function of x = q2/m2

K
in Figs. 3 and 4. We observe that for f+ the reducible and
the irreducible O(p6) contributions cancel almost com-
pletely. For f− the irreducible loop corrections are very
small. For both f+ and f− the O(p6) loop corrections are
essentially linear functions of q2, i.e. they create only small
nonlinear contributions to the form factors.

The interpolation polynomials for the loop corrections
at order p6 of the form factors f± (i.e. the O(p4, p6) parts
of the full renormalized form factors given in (71), but
without the tree graphs from L(6)) read

∆loop
p6 f+ = x(−0.0101 + 0.0009x + 0.0054x2 (91)

+ 0.0007x3) + ∆loop
p6 f+(0),

∆loop
p6 f− = x(0.0185 + 0.0001x + 0.0022x2 (92)

+ 0.0008x3) + ∆loop
p6 f−(0),

x = q2/m2
K ∈ [0, 0.5]. For completeness, we quote the

results for f±(0) which come from the O(p4) and O(p6)
loops:

∆loop
p4+p6f+(0) (93)

= ∆p4f+(0) + ∆red.loop
p6 f+(0) + ∆irred.loop

p6 f+(0)
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Fig. 3. Loop contributions to the
form factor f+(q2). The solid line
is the leading order O(p4) result,
the dotted curves denote the cor-
rections at order p6 due to the re-
ducible respectively irreducible loop
diagrams in the GL scheme (on the
one hand diagrams (2a)–(3f) and
the p6 contributions of the renor-
malized leading order diagrams (0),
(1a)–(1c), on the other hand di-
agrams (5a)–(5c), cf. Fig. 2). The
contribution of diagram (4) is miss-
ing: it would add an arbitrary
parabola through the origin
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Fig. 4. Loop contributions to the
form factor f−(q2), in analogy to
Fig. 3. The contribution from the
L(6) tree graph (4) is missing. It
would add an arbitrary straight line
through the origin

= −0.0229 + 0.00937 + 0.00853 = −0.0050,

∆loop
p4+p6f−(0) (94)

= ∆p4f−(0) + ∆red.loop
p6 f−(0) + ∆irred.loop

p6 f−(0)
= −0.1836 + 0.0832 − 0.0533 = −0.1537.

Here, ∆irred.loop
p6 denotes the contributions of the irre-

ducible diagrams (5a), (5b), (5c) from Fig. 2 and the ir-
reducible part of the wavefunction renormalization (di-
agram (h) from Fig. 1). ∆red.loop

p6 stands for the remain-
ing loop contributions which all come from reducible dia-
grams. To these results, the contributions of the L(6) con-
stants, which occur at O(p6), must be added. These can
either be determined by experiment or by model calcula-
tions.

The O(p6) loop contributions still depend on the mass
scale µ. This dependence follows from their divergent parts
which are given in (77). For f+(0) we find a value of 0.0617
at the scale µ = 500 MeV and a value of −0.0364 at the
scale µ = 1000 MeV to be compared with the above value,
−0.0050, at µ = 770 MeV. It is seen that the loop contri-
bution to f±(0) is rather sensitive to the choice of µ due
to cancellations of the reducible and the irreducible con-
tributions. This µ dependence is of course canceled by the
µ dependence of the p6 counterterms. Equations (93) and

(94) only serve as an indication of the size of the effects
to be expected.

At the present stage the predictive power of our O(p6)
calculation lies only in quantifying a deviation from linear
form factor rise. From (73) and (75) we find a nonlinear
contribution to f+ of

∆nonlin.
p6 f+(q2) = 0.10

q4

m4
K

, (95)

whereas f− contains negligible nonlinearities in the rele-
vant kinematic range. The effect of the quadratic term in
f+ is essentially a lowering of the parameter λ+ defined
in (4). In our fit we find

λ+ = 0.022 (96)

(cf. Fig. 5) as compared to the linear fit λ+ = 0.0245 in
[2].

We conclude this section with a short discussion of the
errors of the O(p6) correction. Apart from the general am-
biguity due to the L(6) counterterms, errors arise from the
L(4) constants which appear in the O(p6) corrections, and
from the one L(6) constant, associated with the q4 term
of f+(q2), which can be extracted from the pion electro-
magnetic form factor. Although these errors could be as
large as 10%, they are irrelevant to our result as the total
O(p6) effect is small; see Fig. 5.
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Fig. 5. The kaon semileptonic form
factor f+ to O(p4) and O(p6) chi-
ral perturbation theory versus ex-
periment. The data are from the
CPLEAR experiment [2], the up-
per dotted curve is the leading order
O(p4) result of chiral perturbation
theory, the solid curve is the full re-
sult at order p6, and the lower dot-
ted curve is the linear fit from [2].
The slope at the origin of the O(p6)
result has been fitted to the data;
its second derivative comes from the
electromagnetic pion form factor

6 Analysis of results and conclusions

We have calculated the O(p6) contribution to semileptonic
Kl3 decay in SU(3) × SU(3) chiral perturbation theory.
This is an effective field theory, so that there appear new
operators with unknown couplings in each order of per-
turbation theory. For the Kl3 form factors f±(q2) this
means that the constant and the linear term in q2 are
not determined by the theory. The q4 counterterm, how-
ever, is the same for the semileptonic form factor f+(q2)
and the electromagnetic form factor of the charged pion.
It can therefore be extracted by comparing the O(p6) chi-
ral perturbation theory with low-energy data on the pion
electromagnetic form factor. The details are described in
Appendix D. There is no q4 counterterm for the form fac-
tor f−(q2).

We have found that the O(p6) loop corrections are
essentially linear in q2. Thus, the only nonlinearity is the
q4 contribution to f+ coming from the L(6) tree graph
which is related to the electromagnetic pion form factor.

It is interesting to consider the reducible and the irre-
ducible O(p6) loop results separately as plotted in Figs. 3
and 4. It is clearly seen that for f+ both terms cancel al-
most exactly in the physical range of Kl3 decay. It should
be kept in mind, however, that an arbitrary linear term
can always be added to the O(p6) predictions. For f− the
irreducible contributions are very small.

The results obtained are interesting from the following
points of view.

(1) The convergence of chiral perturbation theory in semi-
leptonic Kl3 decay is established. It turns out that in
Kl3 decay the O(p6) corrections are small. This need
not always be the case [12].

(2) For the form factors, the deviation from a linear rise
in q2 is small, but not negligible (for f+). The result of
the nonlinear contribution to f+ is effectively a low-
ering of the parameter λ+.

(3) Our method of calculating the irreducible two-loop
diagrams of high tensorial rank and involving three
different masses can also be applied elsewhere.

(4) The wavefunction renormalization constants calcu-
lated here can be employed in other processes.

(5) The divergent parts of the relevant L(6) parameters
βj appear in other processes as well and can be used
there as a check.

Appendix

A One-loop integrals

In this appendix we reproduce the well-known one-loop
results. With the definition

Lg(m2) = log
(

m2

4πµ2

)
+ γ (97)

one has

A0(m2) = µ4−D

∫
dDk

i(2π)D

1
k2 − m2 (98)

= −µ2

4π
Γ (−1 + ε)

(
m2

4πµ2

)1−ε

=
m2

(4π)2

{
1
ε

+ 1 − Lg(m2)

+ ε

[
1 +

π2

12
− Lg(m2) +

Lg(m2)2

2

]
+ O(ε2)

}
,

and

B0(q2; m2
1, m

2
2) (99)

= µ4−D

∫
dDk

i(2π)D

1
[(k + q)2 − m2

1][k2 − m2
2]

=
b(−1)(q2; m2

1, m
2
2)

ε
+ b(0)(q2; m2

1, m
2
2)

+ εb(1)(q2; m2
1, m

2
2) + O(ε2),

with

b(−1)(q2; m2
1, m

2
2) =

1
(4π)2

, (100)

b(0)(q2; m2
1, m

2
2) =

1
(4π)2
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×

2 − Lg(m2

1) +
2∑

j=1

xj log
(

1 − 1
xj

)
 ,

b(1)(q2; m2
1, m

2
2) =

1
(4π)2

×
{

4 +
π2

12
− 2Lg(m2

1) +
Lg(m2

1)
2

2

+
1
2

2∑
j=1

xj log
(

1 − 1
xj

)

× [4 − 2Lg(q2 − i0) − log(1 − xj) − log(−xj)]
− x1[log(1 − x1) log(1 − x2) − log(−x1) log(−x2)]

+ (x1 − x2)
[
log(x2 − x1) log

(
1 − 1

x2

)
− Li2

(
1 − x2

x1 − x2

)

+ Li2

( −x2

x1 − x2

)]}
,

where D = 4− 2ε is the dimension of space-time, x1/2 are
given by

x1,2 =
1

2q2

{
m2

2 − m2
1 + q2 ±

√
λ(m2

1, m
2
2, q

2)
}

, (101)

λ being the Källén function λ(a, b, c) = (a − b − c)2 − 4bc,
and where we have expanded to order ε1. All masses carry
an infinitesimal negative imaginary part.

Tensor integrals can be reduced to scalar ones by de-
composing them with respect to Lorentz covariants. The
notation is

Ar(m2) = coefficient of the tensor inte-
gral with r momenta k in the
numerator (r even)

(102)

Brs(q2; m2
1, m

2
2) = coefficient of the tensor inte-

gral with r momenta k in the
numerator, and s factors of
gµν on the rhs,

(103)

e.g.

µ4−D

∫
dDk

i(2π)D

kµkν

k2 − m2 = gµνA2 (104)

and

µ4−D

∫
dDk

i(2π)D

kµ

[(k + q)2 − m2
1][k2 − m2

2]
(105)

= qµB10,

µ4−D

∫
dDk

i(2π)D

kµkν

[(k + q)2 − m2
1][k2 − m2

2]
= qµqνB20 + gµνB21,

µ4−D

∫
dDk

i(2π)D

kµkνkρ

[(k + q)2 − m2
1][k2 − m2

2]
= qµqνqρB30 + (gµνqρ + gµρqν + gνρqµ)B31.

A2 is given in terms of A0 in (64), and the functions Brs

can all be related to B0 (and A0). For the form factor f+

we need

B21(q2; m2
1, m

2
2) =

1
4q2(1 − D)

(106)

×
{

(m2
2 − m2

1 − q2)A0(m2
1) + (m2

1 − m2
2 − q2)A0(m2

2)

+ λ(q2, m2
1, m

2
2)B0(q2; m2

1, m
2
2)
}

,

B31(q2; m2
1, m

2
2) =

1
8q4(1 − D)

(107)

×
{[

q4 − m4
1 − m4

2 + 2m2
1m

2
2 + 4m2

1q
2 − 4m2

1q
2

D

]

× A0(m2
1) +

[
λ(q2, m2

1, m
2
2) +

4m2
2q

2

D

]
A0(m2

2)

+ (m2
1 − m2

2 − q2)λ(q2, m2
1, m

2
2)B0(q2; m2

1, m
2
2)

}
.

In addition, there are one-loop integrals which involve
higher powers of propagators. These are obtained from the
formulae above by differentiation with respect to m2:

A0;n(m2) =
1

(n − 1)!

[
d

dm2

]n−1

A0(m2), (108)

Brs;n1n2(q
2; m2

1, m
2
2) =

1
(n1 − 1)!(n2 − 1)!

(109)

×
[

∂

∂m2
1

]n1−1 [
∂

∂m2
2

]n2−1

Brs(q2; m2
1, m

2
2).

B Reducible contributions
to the K�3 form factor f+

In this appendix we give the reducible contribution ∆ of
each diagram for the K�3 form factor f+. The upper index
of ∆ refers to a specific diagram in Fig. 2.

The basic one-loop functions occurring here (and in
the other form factor f−) are A0 and B0, and tensors and
mass derivatives thereof, cf. Appendix A.

∆(0)f+ = 1, (110)

∆(1a)f+ = − 3
2F 2

{
B21(q2; m2

η, m2
K) (111)

+ B21(q2; m2
K , m2

π)
}

,

∆(1b)f+ =
1

6F 2

{
3A0(m2

η) + 7A0(m2
K) (112)

+ 5A0(m2
π)
}

,

∆(1c)f+ =
2

F 2

{
4L4(m2

π + 2m2
K) (113)

+ 2L5(m2
π + m2

K) + q2L9

}
,

∆(2a)f+ =
2

F 4

{
2B31(q2; m2

η, m2
K)L3(m2

π − m2
K) (114)

− 2B31(q2; m2
K , m2

π)[8L1 + 4L2 + L3](m2
π − m2

K)
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+ B21(q2; m2
η, m2

K)
[
L3(m2

π − m2
K + 3q2)

− 6L4(m2
π + 2m2

K) − 2L5(m2
π + 5m2

K)
]

− B21(q2; m2
K , m2

π)
× [

8L1(m2
π − m2

K − q2) + 4L2(m2
π − m2

K + q2)

+ L3(m2
π − m2

K − 3q2) + 2L4(7m2
π + 10m2

K)

+ 6L5(m2
π + m2

K)
]}

,

∆(2b)f+ =
1

F 4

{
3B21(q2; m2

K , m2
π) (115)

× [ − 4L4(m2
π + 2m2

K) − 2L5(m2
π + m2

K) − q2L9
]

+ B21(q2; m2
η, m2

K)
[ − 12L4(m2

π + 2m2
K)

+ 2L5(m2
π − 7m2

K) − 3q2L9
]}

,

∆(2c)f+ =
1

3F 4

{
A0(m2

η)[−48L1m
2
η − 14L3m

2
η (116)

+ 4L4(14m2
K + m2

π) + 13L5(2m2
K + m2

π) + 3q2L9]
+ A0(m2

K)[−192L1m
2
K − 24L2m

2
K − 60L3m

2
K

+ 4L4(44m2
K + 7m2

π) + 2L5(31m2
K + 7m2

π) + 7q2L9]
+ A0(m2

π)[−144L1m
2
π − 24L2m

2
π − 54L3m

2
π

+ 4L4(10m2
K + 29m2

π) + 2L5(2m2
K + 23m2

π) + 5q2L9]
− 2A2(m2

η)[24L2 + 5L3]

− 12A2(m2
K)[4L1 + 18L2 + 5L3]

− 6A2(m2
π)[8L1 + 28L2 + 7L3]

}
,

∆(2d)f+ =
1

F 4

{
12B21(q2; m2

η, m2
K) (117)

× [L4(2m2
K + m2

π) + L5m
2
K ] + 4B21(q2; m2

K , m2
η)

× [3L4(2m2
K + m2

π) + L5(4m2
K − m2

π)]
+ 12B21(q2; m2

K , m2
π)[L4(2m2

K + m2
π) + L5m

2
π]

+ 12B21(q2; m2
π, m2

K)[L4(2m2
K + m2

π) + L5m
2
K ]

+ 12B21;12(q2; m2
η; m2

K)m2
K [L4(2m2

K + m2
π) + L5m

2
K

− 2L6(2m2
K + m2

π) − 2L8m
2
K ]

+ 12B21;12(q2; m2
K ; m2

π)m2
π[L4(2m2

K + m2
π) + L5m

2
π

− 2L6(2m2
K + m2

π) − 2L8m
2
π]

+ 12B21;12(q2; m2
π; m2

K)m2
K [L4(2m2

K + m2
π) + L5m

2
K

− 2L6(2m2
K + m2

π) − 2L8m
2
K ]

+ 4B21;12(q2; m2
K ; m2

η)

× [3L4m
2
η(2m2

K + m2
π) + L5m

2
η(4m2

K − m2
π)

− 2L6(8m4
K + 2m2

Km2
π − m4

π)

− 16L7(m2
K − m2

π)2 − 2L8(8m4
K − 8m2

Km2
π + 3m4

π)]
}

,

∆(2e)f+ =
1

3F 4

{
− 4A0(m2

η) (118)

× [3L4(2m2
K + m2

π) + L5(4m2
K − m2

π)] − 28A0(m2
K)

× [L4(2m2
K + m2

π) + L5m
2
K ] − 20A0(m2

π)
× [L4(2m2

K + m2
π) + L5m

2
π] − 28A0;2(m2

K)m2
K

× [L4(2m2
K + m2

π) + L5m
2
K − 2L6(2m2

K + m2
π)

−2L8m
2
K ]

− 20A0;2(m2
π)m2

π

× [L4(2m2
K + m2

π) + L5m
2
π − 2L6(2m2

K + m2
π)

−2L8m
2
π]

− 4A0;2(m2
η)

× [3L4m
2
η(2m2

K + m2
π) + L5m

2
η(4m2

K − m2
π)

− 2L6(8m4
K + 2m2

Km2
π − m4

π) − 16L7(m2
K − m2

π)2

− 2L8(8m4
K − 8m2

Km2
π + 3m4

π)]
}

,

∆(3a)f+ =
9

4F 4

{
B21(q2; m2

η, m2
K)2 (119)

+ 2B21(q2; m2
η, m2

K)B21(q2; m2
K , m2

π)

+ B21(q2; m2
K , m2

π)2
}

,

∆(3b)f+ = − 1
4F 4

{
3A0(m2

η)B21(q2; m2
η, m2

K) (120)

+ 3A0(m2
η)B21(q2; m2

K , m2
π)

+ 3A0(m2
η)B21(q2; m2

K , m2
π)

+ 9A0(m2
K)B21(q2; m2

η, m2
K)

+ 7A0(m2
K)B21(q2; m2

K , m2
π)

+ 3A0(m2
π)B21(q2; m2

η, m2
K)

+ 5A0(m2
π)B21(q2; m2

K , m2
π)
}

,

∆(3c)f+ =
1

24F 4

{
9B21(q2; m2

η, m2
K) (121)

× [A0(m2
π) + 6A0(m2

K) + A0(m2
η)]

+ B21(q2; m2
π, m2

K)
× [33A0(m2

π) + 30A0(m2
K) + 9A0(m2

η)]

− 6B21;12(q2; m2
K ; m2

π)m2
π

× [A0(m2
η) − 3A0(m2

π)]

+ 3B21;12(q2; m2
π; m2

K)A0(m2
η)(3m2

η + m2
π)

+ 3B21;12(q2; m2
η; m2

K)A0(m2
η)(3m2

η + m2
π)

− 2B21;12(q2; m2
K ; m2

η)

× [9m2
πA0(m2

π) − 6(3m2
η + m2

π)A0(m2
K)

+ (16m2
K − 7m2

π)A0(m2
η)
}

,

∆(3d)f+ = − 1
72F 4

{
57A0(m2

η)A0(m2
K) (122)

+ 42A0(m2
K)2 + 41A0(m2

K)A0(m2
π) + 40A0(m2

π)2

− 2A0;2(m2
η)A0(m2

η)(16m2
K − 7m2

π)

+ 12A0;2(m2
η)A0(m2

K)(3m2
η + m2

π)

− 18A0;2(m2
η)A0(m2

π)m2
π

+ 7A0;2(m2
K)A0(m2

η)(3m2
η + m2

π)

− 10A0;2(m2
π)A0(m2

η)m2
π

+ 30A0;2(m2
π)A0(m2

π)m2
π

}
,

∆(3e)f+ = − 1
18F 4

{
9A0(m2

η)B21(q2; m2
η, m2

K) (123)

+ 6A0(m2
η)B21(q2; m2

K , m2
π)
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+ 24A0(m2
K)B21(q2; m2

η, m2
K)

+ 19A0(m2
K)B21(q2; m2

K , m2
π)

+ 12A0(m2
π)B21(q2; m2

η, m2
K)

+ 20A0(m2
π)B21(q2; m2

K , m2
π)
}

,

∆(3f)f+ =
1

360F 4

{
81A0(m2

η)2 (124)

+ 168A0(m2
η)A0(m2

K) + 132A0(m2
η)A0(m2

π)

+ 318A0(m2
K)2 + 386A0(m2

K)A0(m2
π) + 175A0(m2

π)2
}

.

C Divergent parts of L(6) constants

In this appendix we list the divergent parts of all L(6)-
constants which occur in the meson vector form factors.
They are derived from (73) and (74) on the one hand and
(77) and (78) on the other hand taking into consideration
(76). Similar relations for the electromagnetic form factors
of π±, K±, K0, and the weak form factors f± for the
η → K±W∓ decay are also taken into consideration [12,
16].

Let

βj =
β

(−2)
j

ε2 +
β

(−1)
j

ε
+ β

(0)
j + O(ε) (125)

be the Laurent expansion of the L(6) parameters, cf. (46).
For their divergent parts

βdiv
j =

β
(−2)
j

ε2 +
β

(−1)
j

ε
, (126)

we find

βdiv
22 + βdiv

23 =
1

(4π)2

{
1

64(4π)2ε2 (127)

− 1
ε

[
1

96(4π)2
− 2

3
L

(0)
1 +

1
3
L

(0)
2 − 1

2
L

(0)
3 +

1
4
L

(0)
9

]}
,

2βdiv
24 − βdiv

25 = − 1
(4π)2

3
2ε

L
(0)
3 , (128)

βdiv
26 =

1
(4π)2

{
1

32(4π)2ε2 +
1
ε

(129)

×
[

7
192(4π)2

− 1
2
L

(0)
3 − 1

2
L

(0)
9

]}
,

βdiv
22 − 2βdiv

24 + βdiv
27 =

1
(4π)2

(130)

×
{ −11

96(4π)2ε2 − 1
ε

[
83

1152(4π)2
− 2L

(0)
1 + L

(0)
2

−3
2
L

(0)
3 − 2

3
L

(0)
4 − 1

2
L

(0)
5 − 3

4
L

(0)
9

]}
,

βdiv
14 =

1
(4π)2

{ −7
128(4π)2ε2 +

1
ε

[
35

1152(4π)2
(131)

+
1
3
L

(0)
1 +

1
6
L

(0)
2 +

1
36

L
(0)
3 − L

(0)
4 +

3
4
L

(0)
5

]}
,

βdiv
8 =

1
(4π)2

{ −19
64(4π)2ε2 − 1

ε

[
13

384(4π)2
(132)

− 4
3
L

(0)
1 − 8

3
L

(0)
2 − 16

9
L

(0)
3 − 3

2
L

(0)
5

]}
,

βdiv
16 + βdiv

18 =
1

(4π)2

{
3

64(4π)2ε2 (133)

− 1
ε

[
119

384(4π)2
+

4
3
L

(0)
1 +

14
3

L
(0)
2 +

28
9

L
(0)
3 + 5L

(0)
4

− 37
18

L
(0)
5 − 6L

(0)
6 + 8L

(0)
7 − 2L

(0)
8

]}
,

βdiv
17 =

1
(4π)2

{ −17
128(4π)2ε2 (134)

+
1
ε

[
173

768(4π)2
+

2
3
L

(0)
1 +

7
3
L

(0)
2 +

11
9

L
(0)
3 + L

(0)
4

− 13
12

L
(0)
5 + 12L

(0)
7 + 3L

(0)
8

]}
,

βdiv
15 =

1
(4π)2

{
7

192(4π)2ε2 − 1
ε

[
5

324(4π)2
(135)

+
2
9
L

(0)
1 +

1
9
L

(0)
2 +

1
54

L
(0)
3 − 2

3
L

(0)
4 +

1
2
L

(0)
5

]}
,

βdiv
20 =

1
(4π)2

{ −11
384(4π)2ε2 (136)

− 1
ε

[
125

2304(4π)2
+

2
9
L

(0)
1 +

7
9
L

(0)
2 +

17
108

L
(0)
3 +

1
3
L

(0)
4

− 17
12

L
(0)
5 + 4L

(0)
7 + 2L

(0)
8

]}
,

where L
(0)
i are the ε0 coefficients of the L(4) parameters,

cf. (41).
Note that the βj do not contain any mass terms. Thus,

the only source of masses in the Lagrangian (19) is the
mass matrix χ defined in (10).

D Electromagnetic pion form factor

The O(p6) calculation of the pion electromagnetic form
factor is carried out in a manner completely analogous to
that of the kaon semi-leptonic form factors. We quote the
result of the L(6) contribution:

Fπ+
[L(6)] =

2q4

F 4 {β22 + β23} (137)

+
2q2

F 4 {−2m2
πβ22 + 2m2

πβ24

+ m2
πβ25 + (m2

π + 2m2
K)β26 − 2m2

πβ27}.

For the interpolation polynomials of the O(p6) loop cor-
rections (reducible plus irreducible diagrams) we obtain

∆loop
p6 [Fπ+

] = x(0.0813 + 0.0619x + 0.0387x2 (138)

+ 0.0218x3 + 0.0068x4)
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Fig. 6. O(p6) loop contributions to
the pion electromagnetic form factor,
in analogy to Fig. 3
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Fig. 7. The pion electromagnetic
form factor in O(p4) and O(p6) chi-
ral perturbation theory versus exper-
iment. The data are from [21–23]

for x = q2/m2
K ∈ [−1, (2mπ)2/m2

K ]) and in the decay
region

∆loop
p6 [Fπ+

] = −0.0084 + 0.1076x + 0.0956x2 (139)

− 0.0544x3 + 0.0233x4 − 0.0047x5

+ i(0.0120 − 0.0998x + 0.2435x2 + 0.1848x3

+ 0.1087x4 + 0.0260x5)

for x = q2/m2
K ∈ [4m2

π/m2
K , 1]).

The separate reducible and irreducible O(p6) loop con-
tributions (modulo a quadratic polynomial) to the pion
form factor are plotted in Fig. 6.

The arbitrary linear term can be fitted by using the
experimental pion charge radius [21]

〈
r2〉π+

= (0.439 ± 0.008) fm2. (140)

The constant multiplying q4 is obtained by using the cur-
vature of the form factor at the origin. We chose a value of
3.4 GeV−4, which represents an average of some typical ex-
tractions from experiment [18–20]. As Fig. 7 demonstrates
this choice of parameters yields a good description of the
experimental form factor.
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